
Eldakar et al. / J Zhejiang Univ SCI 2005 6A(11):1327-1340 1327

The Million Book Project at Bibliotheca Alexandrina

ELDAKAR Youssef1, EL-GAZZAR Khalid1, ADLY Noha†1,2, NAGI Magdy1,2
(1Bibliotheca Alexandrina, El Shatby 21526, Alexandria, Egypt)

(2Computer and Systems Engineering Department, Alexandria University, Alexandria, Egypt)
†E-mail: Noha.Adly@bibalex.org

Received Aug. 5, 2005; revision accepted Sept. 10, 2005

Abstract: The Bibliotheca Alexandrina (BA) has been developing and putting to use a workflow for turning printed books into
digital books as its contribution to the building of a Universal Digital Library. This workflow is a process consisting of multiple
phases, namely, scanning, image processing, OCR, digital archiving, document encoding, and publishing. Over the past couple of
years, the BA has defined procedures and special techniques for the scanning, processing, OCR and publishing, especially of
Arabic books. This workflow has been automated, allowing the governance of the different phases and making possible the
production of 18000 books so far. The BA has also designed and implemented a framework for the encoding of digital books that
allows publishing as well as a software system for managing the creation, maintenance, and publishing of the overall digital
repository.

Key words: Million Book Project (MBP), Digital books workflow, Digitization, Universal Digital Library, Scanning, Multi-

---lingual OCR, Digital publishing, Image-on-text, DjVu, PDF
doi:10.1631/jzus.2005.A1327 Document code: A CLC number: TP391

INTRODUCTION

The Bibliotheca Alexandrina (BA) has develop-
ed a workflow for turning printed books into digital
books. The process starts with selection of books to be
digitized, which is done mainly by BA’s Library
Service Department. Books metadata is entered into
the Digital Lab database. Metadata entry is followed
by three core phases: scanning phase, in which the
digital copy is generated; processing phase, in which
image enhancement is performed; and OCR phase, in
which text is recognized from the processed images.
At the BA, the procedures for scanning, processing,
and OCR have been laid out with Arabic content in
mind. After the OCR output is generated, the work-
flow splits into two branches: one for encoding digital
books and the other for archiving on CDROM, tape,
and hard drives. BA has developed a Universal
Digital Book Encoder (UDBE) that generates im-
age-on-text versions of digital books, namely, PDF
and DjVu files, with support for Arabic as well as other
languages. Fig.1 shows the digital books workflow.

SCANNING

The Minolta PS7000 scanner is used. Scanning
settings can be set either from the control panel or by
scanning software (ACDSee 4.0). The settings and
parameters used in the scanning phase are described
below.

Resolution

Books are scanned at 300 dpi. For Arabic books,
it was found that 300 dpi is the resolution that gives
the best OCR results. Actually, the specification of
the Arabic OCR software used, Sakhr’s Automatic
Reader v6.0 Professional or v7.1 Gold, recommends
using 300 dpi images. Arabic recognition engines for
the Arabic OCR software are built based on 300 dpi
fonts and hence images scanned at 300 dpi give better
results for the Arabic OCR than images scanned at
lower or higher resolutions, such as 600 dpi. Also,
downgrading 600 dpi images by software to 300 dpi
does not give good OCR results. In fact, the OCR
quality of downgraded images is lower quality than

Journal of Zhejiang University SCIENCE
ISSN 1009-3095
http://www.zju.edu.cn/jzus
E-mail: jzus@zju.edu.cn

Eldakar et al. / J Zhejiang Univ SCI 2005 6A(11):1327-1340 1328

that of those scanned at 300 dpi. As for Latin books,
the 300 dpi resolution was found to give good image
quality and acceptable OCR results. Actually, 300 dpi
is the resolution recommended by ABBYY’s Fine-
Reader for optimal performance.

As a leader of digitization projects in the Middle
East, BA focuses on digitizing Arabic books. Of the
18000-book currently digitized collection, approxi-
mately 15000 books (83%) are Arabic books, and the
rest of the collection encompasses a variety of Latin
languages such as English, French, Italian, German,
Russian, and so on.

Pages are scanned in either single or split page
mode, and the selection of “text” or “photo” depends
on the type of the original page.

Image format and compression

Tagged Image File Format (TIFF) and CCITT
G4 compression are used. This combination ensures
good compression rates for bitonal images without
loss of detail.

Masking and center erase

The masking feature contains two sub-features:
finger masking and centering. Center erase can be
used with most of the books except with books having
very close text to the center line. Setting masking and
center erase features gives a neater look to the
scanned pages and helps in reducing the amount of
processing needed to be performed on the scanned
pages.

Contrast

Contrast makes the characters look lighter or

darker than how they appear in the original book.
Adjusting contrast helps to fix the book printing
simple errors, such as pixelized or dark characters.
There are two types of contrast: black (shadow) con-
trast and white (highlight) contrast. When the black
contrast is increased, letters appear darker. When the
white contrast is increased, the light area of the paper
appears whiter. Fig.2 shows a typical case in which
black contrast is useful. However, the side effect of
this increased black contrast is having more obvious
speckles. The left image is scanned with higher
shadow contrast than the right one causing filling of
characters and some speckles. The contrast settings
significantly affect the OCR performance.

Higher values of highlight contrast are used if

the book pages are yellow or if the page has a lot of
speckles and noise. Fig.3 shows a yellow-paged book.
Scanning this book with low values of white contrast
shows a lot of speckles as shown in the left image of
the figure. Increasing the value of white contrast helps
in reducing the speckles as shown in the right image.
Highlight contrast should be used carefully especially
for Arabic books, otherwise the characters look very
light and are not suitable for OCR.

Higher values of shadow contrast are used if the
printing of the book characters is light or for old
Arabic books with little gaps between characters. In
such case, shadow contrast should be increased to
make the characters look darker. The effect of in-
creasing the shadow contrast is shown in Fig.4, where
the left image is scanned with a low value of black
contrast, whereas the shadow contrast is increased in
the right image.

Fig.2 Effect of increasing shadow contrast

Fig.1 Digital books workflow

Eldakar et al. / J Zhejiang Univ SCI 2005 6A(11):1327-1340 1329

Page count check

A simple check on the number of scanned pages
is performed against the total number of pages in the
printed book. If all the pages are scanned, the fol-
lowing formula must be valid: T=L+U, where T
stands for TIFF file count, L stands for last page
number, and U stands for count of unnumbered pages
in the book. In addition, T must be an even number,
since the front and back of each page are scanned.

PROCESSING

The purpose of the processing phase is to clean
up and enhance the original images that come out
from the scanner. Specifically, the processing phase
has four objectives: black edge removal, centering,
noise removal, and deskewing. Black edge removal

and centering are performed in manual processing
using Photoshop, while noise removal and deskewing
are performed in automatic processing using ScanFix.
A fully automatic processing procedure is desirable.
However, experiment has shown that automatic
cleanup features in ScanFix, such as margin, i.e. black
edge, removal and intelligent cropping, are generally
not quite reliable. For Arabic, in particular, some of
these features can be detrimental, such as line re-
moval, which can potentially erase the baseline of
characters in this cursive script.

The first step to take place is noise removal.
ScanFix’s despeck parameter is experimented with
using a couple of test images to determine the optimal
setting for the book that removes as much noise as
possible without damaging sensitive components of
the text, such as dots and diacritics. Taking precaution
not to damage sensitive components of the text is
particularly important in Arabic, which makes exten-
sive use of dots. The despeck parameter is typically a
value ranging from 3 to 5 pixels. A batch is then run,
whereby despecked copies of original files are trans-
ferred to an intermediate directory.

Images in the intermediate directory are then
manually edited in Photoshop. Here, a selection rec-
tangle is drawn tightly around the actual content, cut
into the clipboard, the page is blanked out, and then
the content is pasted from the clipboard back into the
page. This procedure, where the steps following the
drawing of the selection rectangle are recorded in an
action, accomplishes black edge removal and cen-
tering in a rapid and efficient way. This manual
treatment of individual pages is an opportunity for
taking note of each image and observing at an early
stage whether noise removal was too aggressive and
returning back to work on ScanFix and the original
images if necessary. This is also an opportunity for
restoring photos and other non-textual content that is
often damaged by despecking.

Following the manual processing, files in the
intermediate directory are deskewed in batch using
ScanFix, transferring the deskewed copies to the final
directory of the processed images. Automatic des-
kewing is not performed until the pages are cleaned up
in Photoshop, because the cleaner the input, the better
is ScanFix able to detect and correct skew. The book is
then revised generally. In case of damage to images
during the ScanFix batch, files are restored from the

Fig.3 Effect of increasing highlight contrast

Fig.4 Effect of increasing shadow contrast on old books

Eldakar et al. / J Zhejiang Univ SCI 2005 6A(11):1327-1340 1330

intermediate directory. Pages that are still skewed
after automatic deskewing are manually corrected,
where the SF_SKEWTO string option in ScanFix is
used. Deskewing bitonal images is not achievable in
Photoshop, and converting to grayscale, editing, and
then converting back to bitonal causes alterations in
the shape of characters, which has a damaging effect
on OCR.

Deskewing in ScanFix alters the dimensions of
images slightly, so, Photoshop is used in automation
mode to resize the canvas back to the original di-
mensions. Finally, because Photoshop does not sup-
port CCITT G4 compression, images are recom-
pressed in batch using ACDSee. Upon completion,
the intermediate directory is discarded.

It is highly desirable to generate skew-free pages
in the scanning phase. Scanning a single page typi-
cally takes 6 s. It is always very helpful for the scan-
ning operator to spend more time in adjusting the
scanned page rather than making this correction in the
processing phase.

OCR

The OCR process is language-specific, and,
therefore, the OCR phase is split into two branches: a
Latin branch and an Arabic branch.

In the Latin branch, ABBYY’s FineReader is the
system used to produce text and eventually PDF from
page images. Other than selecting the appropriate
Latin language, the software’s settings are kept at
their defaults. However, automatic orientation cor-
rection is turned off, because it could mistakenly
rotate pages that are already oriented correctly. The
batch function is used to run the entire PTIFF direc-
tory into the OCR. A single “text-under-image” PDF
is saved at 150 dpi containing all pages of the book.
The outcome of the recognition is kept in Fine-
Reader’s native format, the FRF files, under the TXT
directory, which makes it possible to export the re-
sults to any of the supported formats without repeat-
ing the OCR process itself later.

Unlike Latin-based scripts, Arabic is written
cursively, where characters are joined together. As
such, an Arabic character assumes different forms
according to its position in the word: initial, medial,
final, or isolated. Arabic characters also rely exten-

sively on non-connected components, such as dots
and diacritics. In addition, there exist many variants
of Arabic fonts. Certain fonts are rather intricate,
featuring complex ligatures, where characters overlap
and do not share a common baseline. Furthermore,
suppliers of Arabic fonts do not all follow a specific
standard. This all makes segmenting and recognizing
Arabic text a difficult problem for a computer system.
The software used in the OCR of Arabic books is
Sakhr’s Automatic Reader. Additionally, though, a text
enhancement process is applied before the actual OCR.

The condition of Arabic characters varies greatly
between different kinds of printings, such as old and
new, light and heavy, and solid and dot matrix print-
ings. Text enhancement, therefore, has the potential to
significantly improve recognition accuracy during the
actual OCR. This pre-OCR text enhancement is car-
ried out using ScanFix, where smoothing and com-
pletion features are particularly employed. Because of
the difficulties associated with this complex script in
OCR, enhancement of Arabic text can be a delicate
business, where the effects and defects of each action
must be weighed out. Although text enhancement is
in fact image processing, it is not performed in the
actual processing phase and is delayed until the OCR
phase, because this irreversible process must be tested
through the OCR software, and the specialists work-
ing in the OCR phase are likely to have a better sense
of which kind of text works better for the OCR engine.
At the end of the OCR phase, the final text-enhanced
images overwrite the images in the PTIFF directory.

During the actual OCR process, Automatic
Reader works on the text-enhanced pages to convert
the images into computer text. Here, special tech-
niques are applied in order to maximize the recogni-
tion accuracy. In particular, OCR engine settings are
adjusted and a “learning” process is employed.

The learning process consists of using two rep-
resentational pages of the book to determine which
patterns the OCR engine has trouble with and build a
“font file” that associates such patterns with the right
characters (Fig.5). This font file is in fact built on an
initial font file selected from a set of pre-built font
libraries, which helps recycle work and improves per-
formance. Using a different page, accuracy is manually
calculated before and after the learning in order to have
a record of the real OCR performance. In the end, all
page images are fed into Automatic Reader in a batch

Eldakar et al. / J Zhejiang Univ SCI 2005 6A(11):1327-1340 1331

and results written to a merged ART file, the Auto-
matic Reader’s native format, which is then converted
to XML to be integrated into the process that leads to
publishing.

In order to improve OCR accuracy for the Arabic
language, a set of custom recognition font libraries
have been built. Each of these recognition font li-
braries is a database of character glyphs that together
describe a particular type of script. Using such li-
braries, the OCR engine is able to better recognize
text on images of printings that belong to one of these
groupings. These font libraries were built by “train-
ing” Automatic Reader’s OCR engine on carefully
selected and classified sets of scanned pages spanning
a wide variety of printings. Classification is based on
three criteria: script type, printing quality, and font
size. At present, within this scheme of classification,
there exists 16 different font libraries, three of which
are under construction, and one is a virtual group
known as “Group X” used to tag unclassifiable print-
ings and handwritings. Fig.6 lists the 16 font libraries.
Based on testing results while compiling these font
libraries, each library is assigned a minimum accuracy
to be achieved when applying the library to images that
belong in this font group. The typesetting fonts Tradi-
tional Arabic (TA), Arabic Transparent (AR), and
DecoType (DT) have been used as a guide in the
naming of the OCR font libraries, while letters have
been used to denote high (H), medium (M), and low (L)
quality, and numerals from 1 (largest) to 5 (smallest)
have been used to indicate the size.

METADATA

Books are selected and brought in batches from
BA’s Library Service Department. Books are cate-
gorized into collections usually denoted by the source
of the books. The batch and collection information is
maintained per book. For productivity tracking, the
condition of the printed book is also recorded in the
database. Thus, the time spent on scanning a book is
evaluated with respect to the page count and the
physical condition of the book, as books in bad
physical condition often take longer to scan than
books in good condition.

The printed book is checked whether it has been
already scanned by entering the value of its BA bar-
code into the database system if the book exists in
BA’s book collection. In such case, metadata can be
directly retrieved from the Integrated Library System
(ILS). For BA, Virtua VTLS is used as ILS. For books
that do not belong to BA’s collection and do not have
a BA barcode, minimal metadata entry is performed,
in which a combination of book title, author, and
publisher is entered and used to check for book du-
plications. If the book has not been previously
scanned, then the scanning phase can proceed. Fig.7
shows insertion of the metadata information of a
printed book into the book database using a Web tool.

Font Low bound High point

AR-H1 97.70% 99.50%

AR-H2 97.60% 99.50%

AR-H3 97.04% 99.10%

AR-H4 Under construction

AR-L1 92.70% 96.70%

DT-M1 Under construction

DT-L2 88.40% 96.80%

TA-H1 97.30% 99.10%

TA-H2 97.60% 99.20%

TA-H3 Under construction

TA-H4 96.50% 97.74%

TA-L1 94.00% 97.70%

TA-L4 94.00% 97.90%

TA-M2 95.80% 98.80%

TA-M4 94.50% 97.50%

X

Fig.6 OCR font libraries

Fig.5 Font learning

Eldakar et al. / J Zhejiang Univ SCI 2005 6A(11):1327-1340 1332

DIRECTORY STRUCTURE AND NAMING
CONVENTION

As a part of the workflow, it is important to keep a

standard directory structure with uniqueness, hence
each book has a unique “book directory name” in the
ASCII character set. In the case of Latin books (Fig.8),
the book directory name is obtained by concatenating
the book title with spaces replaced by dashes, author
abbreviation, and the two-letter ISO-639 language
code. For example, an English book titled “Life in
Modern America” whose author is “Peter Bromhead”
will have the book directory name of life-in-modern-
America-Bro-en. If the book is multi-volume, then the
volume number followed by a dash is added just before
the two-letter language code. Considering the same
example, if the book is the second volume, then its
book directory name will be life-in-modern-America-
Bro-2-en. The book directory name of Arabic books is

obtained in a similar manner (Fig.8). First, however,
the book title and author is machine transliterated into
English, and then the same procedure is followed.

The book directory name is taken as the name of
the directory that contains all files associated with the
digital book throughout its passage through the work-
flow. The book directory contains the following
sub-directories: OTIFF: Original scanned TIFF images;
PTIFF: Processed TIFF images; TXT: OCR output.

FLOW OF DIGITAL BOOKS

BA has developed a special application, the
DL-Client, for managing the flow of digital books
across the different queues of the scanning, processing,
and OCR phases. Each specialist has a specific
DL-Client user which allows the DL-Client to set
limits on the number of books in each user’s queue.
This ensures that digital books will reach their final
destinations as quickly as possible and will not be
placed in users’ queues for a long period.

DL-Client ensures that the digital book exists
only in one place during the book’s lifecycle. When-
ever the digital book completes a phase, its book di-
rectory is moved to its appropriate new location in the
queues.

After successfully entering the metadata of a
certain book, the DL-Client creates the book directory
−using the generated book directory name−under the
books.SCAN folder on the scanning PC. After the
scanning is complete, books are moved from
books.SCAN queue to books.SCAN.complete queue
on the storage server. After scanning the digital book,
the DL-Client records the page count, represented by
the number of TIFF files, into the Digital Lab’s data-
base.

The processing phase starts by pulling a digital
book from books.SCAN.complete on the storage
server to the local directory books.PROCESS on the
processing PC. Upon processing completion, the
digital book is moved from books.PROCESS on the
processing PC to books.PROCESS.complete on the
storage server.

The same procedure takes place in the OCR
phase. A digital book is pulled from books.PROCESS.
complete and is placed locally in the directory books.
OCR on the OCR PC. Upon OCR completion, the
digital book is moved from books.OCR on the OCR

[--Select a Specialist--]

0371397 BarCode

Life in modern American/ Title

xii, 244p.: Number of
Pages

Bromhead, Peter Author

1977 Publication
Date
Language English

 Should Exist in VTLS

medium Condition

B4 collection Collection

Rabab Amin Scan
Specialist
OCR
Specialist

[--Select a Font Library--] Intial Font

Virtua Edit

Colored

Scanned Book

Volume Part

Bitmap

 Should Copy from VTLS

14/10/2004 Received Select a date

Druckaus Langenscheidt Publisher

3526504512 (pbk.) ISBN

[--Select a Specialist--]

40 Batch

Unkown Copyright
Process
Specialist

[--Select a Specialist--] Correction
Specialist

Submit Clear

Book Name Life-in-modern-America-Bro-en

Fig.7 Metadata

Fig.8 Directory structure of a sample Arabic book (left)
and a sample Latin book (right)

Life-in-modern-America-Bro-en

Life-in-modern-America-Bro-en-0001.tif
Life-in-modern-America-Bro-en-0002.tif

Life-in-modern-America-Bro-en-0001.tif
Life-in-modern-America-Bro-en-0002.tif

Life-in-modern-America-Bro-en-0001.tif
Life-in-modern-America-Bro-en-0002.tif

Life-in-modern-America-Bro-en.djvu
Life-in-modern-America-Bro-en.pdf

OTIFF

PTIFF

TXT

alf-lyla-03-ar

alf-lyla-03-ar-0001.tif
alf-lyla-03-ar-0002.tif

PTIFF
alf-lyla-03-ar-0001.tif
alf-lyla-03-ar-0002.tif

TXT
alf-lyla-03-ar-0001.art
alf-lyla-03-ar-0001.xml
alf-lyla-03-ar-0002.art
alf-lyla-03-ar-0002.xml
alf-lyla-03-ar.afn

alf-lyla-03-ar.pdf
alf-lyla-03-ar.djvu

OTIFF

Eldakar et al. / J Zhejiang Univ SCI 2005 6A(11):1327-1340 1333

PC to books.OCR.complete on the server.
Following the OCR, books are moved to the

archiving queue, where they are written to CDROM
and tape. In addition, books are copied to the encod-
ing system’s queue, where image-on-text documents
are generated to be collected by the publishing system.
Fig.9 shows the flow of digital books.

ENCODING

Publishing through image-on-text

Unlike content originally composed in digital
format, digitized content presents a challenge in pub-
lishing. The presentation of digitized books should
provide at least the functionality of the original
documents, and, where appropriate, provide im-
provements that digital presentation makes possible.
Ideally, users should be able to access, display, search,
and navigate digitized documents as effectively as
possible using familiar interfaces. Digital content
produced from non-digital material contains three
levels of information. The first level is the image level,
where paper-based material is presented as arrays of
pixels. The second level is the text level, where tex-
tual information is extracted through analysis of the
images. Finally, the third level is the structure level,
which represents the logical and the physical layout of
the document, where elements of the images are as-
sociated with the textual information. The challenge
in publishing of digitized material, therefore, arises in
presenting this full reconstructed information in the
most usable format. In digital publishing of originally
non-digital items, the following must be addressed:

(1) Preserving the layout. The layout of the
original document should be preserved, including
formatting, structure, figures, tables, etc., such that
the user is presented with an exact copy of the origi-

nal.
(2) Possibility to search. It is desirable that the

user be able to search in the text of the published
document and locate the exact location in the docu-
ment where the search terms occur.

(3) Efficient image compression. Because im-
proved distributability is an important advantage,
efficient image compression is necessary to render
feasible the transfer of digitized work across networks.
Yet, image quality must not be unacceptably com-
promised.

(4) Multilingual text support. Since our goal is to
digitize whatever is possible of the written works of
humanity, supporting all human languages becomes a
necessity. The key to supporting multilingual text in
digitized documents is in the publishing format to
implement a robust international standard character
set such as Unicode (Allen and Becker, 2003).

(5) Multipaging. A book consists of many pages
that are bound together. To be able to publish digital
items that are convenient to distribute and browse, the
publishing format has to be designed to contain mul-
tiple pages in a single file, and, in turn, the format
viewing software has to provide convenient means for
browsing through multipage documents.

There are four different approaches in publishing
digitized documents. The simplest of these ap-
proaches is to publish the material as scanned page
images, such as the Gallica digital library of the BNF
(http://www.gallica.bnf.fr), the Gutenberg’s Bible,
and the Shakespeare in Quarto of the British Library
(http://www.bl.uk/treasures). This approach has the
advantage of preserving the exact original look of
books, but provides no means for a computer to
search, copy, or otherwise process textual informa-
tion.

To compensate for this shortcoming, the second
approach involves publishing the actual text obtained
either through manual data entry or OCR techniques.
Manual data entry which is an approach adopted by
endeavors such as Project Gutenberg (www.guten-
berg.org), has the drawback of losing all original
layout, although it ensures high text accuracy. How-
ever, this manual approach suffers from being slow
and expensive. In contrast, numerous projects resort
to publishing OCR output for its being a quicker
alternative.

Although errors in OCR text may not cause

Fig.9 Flow of digital books and digital book queues

Scanning Processing Recognizing Archiving

Books.Scan Books.Process Books.OCR
Scan

Complete
Queue

Storage Server
Processed
Complete

Queue
OCR

Complete
Queue

Publishing Server
www.bibalex.org

IIS
Client

Eldakar et al. / J Zhejiang Univ SCI 2005 6A(11):1327-1340 1334

problems in tasks such as text categorization, they
may have a negative effect if the text is read by a
human being. Therefore, a third approach to pub-
lishing digitized documents attempts to bring together
the advantages of the first and second approaches by
pairing up the image with its textual information. For
instance, in (Hong and Srihari, 1997; Lesk, 1996)
OCR documents are represented in HTML, where
words, which are recognized with high confidence
recognition results, are used; otherwise, original word
images are substituted. A different method for pairing
text and images, which is used in Carnegie Mellon’s
UDL system (UDL, 2004), is to provide an interface
that allows the reader to easily switch between a
page’s image and its OCR plain text version while
reading a digital book. The same method was used in
the Making of America digital library (MOA)
(Kenney and Rieger, 2000). Although the third ap-
proach is more comprehensive than any of the former
two approaches considered by itself, it still treats the
page image and the text as two separate items while
they are merely different representations of one thing.

The fourth approach aims at benefiting from
both representations of the information by pairing the
image with the associated OCR text in an overlapping
manner in a multilayered document. The page image
is positioned as the first layer on the Z-axis, which is
the visible part. The text tokens are positioned ac-
cording to layout by specifying bounding box infor-
mation in a hidden layer behind the image. A person
viewing such document never sees the actual text but
instead sees the original page image independent of
how well OCR worked. Yet, retrieval systems can
still search, highlight, and copy-and-paste the hidden
text to the level of accuracy achieved by the OCR, as
shown in Fig.10. Image-on-text documents are also
referred to as text-under-image or hidden text docu-
ments.

Multilayering is not a new concept. Adopted by
Adobe Acrobat in the PDF format (PDF Reference,
2004), image-on-text has proven extremely useful as
it preserves exact layout while allowing access to text,
and, therefore, has been used by many digital libraries,
such as IEEE and ACM but only with Latin languages.
OCR engines can produce the necessary components
of the layered presentation, as a result of layout
analysis and segmentation, and several commercial
OCR systems for Latin languages output image-on-

text documents. For non-Latin languages, however,
image-on-text technology is often not readily avail-
able.

Ding et al.(2004) produced multi-level Chinese
documents with hidden text under the image layer,
through an application embedded in their TH-OCR
engine. Documents generated by the TH-OCR engine
can be published in PDF, HTML and XML. Modifi-
cation for the kernel OCR technology was introduced
to support Japanese and Korean languages. Although
the TH-OCR extended the support for multilayered
documents to non-Latin languages, it is still limited to
three Asian languages and is not generalized. Further,
the publishing framework is embedded in the OCR
kernel and, therefore, cannot be reused for other
languages, especially that the TH-OCR software is
applied only in China and is licensed to limited ap-
plications.

General viewers for formats that are capable of
image-on-text, such as DjVu and PDF, are available,
but image-on-text-aware viewers are needed to ma-
nipulate this specific type of documents. The Multi-
valent project (Phelps and Wilensky, 2001), spon-
sored by the NSF Digital Libraries Initiative, brings
about an alternative approach to browsing of digital
documents that works well for image-on-text. Mul-
tivalent is based on the concept of documents con-

Fig.10 Arabic image-on-text with highlighting

Eldakar et al. / J Zhejiang Univ SCI 2005 6A(11):1327-1340 1335

sisting of layers, which are manipulated by add-in
modules known as “behaviors”. Switching between
the image and OCR layers, seeing through the image
layer and examining pieces of the OCR layer using
“lenses”, and annotating the content are possible in
Multivalent. Currently, Multivalent’s supported for-
mats include PDF and XDOC, which is a native OCR
format from ScanSoft. One disadvantage of using
XDOC in publishing, however, is that page images are
stored externally and do not make use of modern
compression technologies, such as shape clustering
and wavelet-based compression. Multivalent presently
lacks support for the DjVu format.

A framework

The Universal Digital Book Encoder (UDBE) is
a framework for the encoding of image-on-text
documents that features a pluggable architecture for
OCR engines and format encoders.

The main concept in the design of the UDBE is
that it adopts a Common OCR Format (COF) that
captures the necessary information for image-on-text
documents. OCR Converters convert recognition
results of OCR engines into the COF, and Format
Handlers, then, encode the COF along with page
images into image-on-text documents, as shown in
Fig.11.

The UDBE allows for the integration of any OCR

engine through OCR Converters, which convert the
native OCR format into the COF, rendering the UDBE
independent of the native format, which is specific to
the engine. Likewise, it allows for the support of any
target format through Format Handlers.

The components of the UDBE are illustrated in
Fig.12. The two blocks of input are post-processed
page images which are enhanced versions of original

page images, and OCR text in the native format of the
OCR engine that processed the page images. For each
book, the UDBE launches an independent process for
each of the Format Handlers to process the input
blocks and write a file in the target format. Eventually,
a digital repository collects these files to publish.

Each format handling process consists of three

general steps. Firstly, each page image is encoded
according to the compression scheme of the target
format. At this point, the encoded images are not
associated with text, and, therefore, are unsearchable.
Secondly, the COF is traversed and OCR text is in-
serted in a layer behind each encoded image, recon-
structing pages into searchable documents while
preserving their original layout. In the last step of
format handling, all encoded images are concatenated
into one document with multiple pages, which is the
light-weight image-on-text bundle that is eventually
published. Finally, a driving module binds together
all OCR Converters and Format Handlers. This
driving module invokes the appropriate OCR Con-
verters for native OCR data and invokes the Format
Handlers to produce target formats. The driving
module enables the encoding to proceed in automated
fashion.

All together, the UDBE is made up of two input
blocks, namely, native OCR data for each supported
OCR format and page images, a conversion module
for each integrated OCR engine, three format han-
dling modules and an output block for each supported

OCR Engine
(A)

OCR Engine
(B)

OCR Engine
(C)

Target format
(X)

Target format
(Y)

OCR Converter
(A)

OCR Converter
(B)

OCR Converter
(C)

Format Handler
(Y)

Format Handler
(X)

COF

Conversion Encoding

Fig.11 Concept of the UDBE

Fig.12 Components of the UDBE

Page images

Image encoder

Encoded image

Text inerter

Searchable
image

Page bundler

Image-on-text
document

OCR Converter

Native OCR
format

Fo
rm

at
 H

an
dl

er

Driving module

Eldakar et al. / J Zhejiang Univ SCI 2005 6A(11):1327-1340 1336

target format, and a driving module that manages the
overall encoding process.

1. Common OCR Format
To allow Format Handlers to encode im-

age-on-text documents using recognition results of
any OCR engine, the UDBE requires the representa-
tion of recognition results in a Common OCR Format
(COF). Integration of an OCR engine, thus, consists
of the implementation of an OCR Converter, which is
a module that parses the engine’s native OCR format
and converts it to the UDBE’s COF.

Encoding of image-on-text documents requires
two pieces of OCR data: word strings and bounding
box coordinates. A word string is a sequence of
characters that make up a whole word that the OCR
engine recognized while analyzing a page image.
Word strings should be represented in Unicode (Allen
and Becker, 2003) in order to accommodate multi-
lingual text and must be encoded in Unicode’s UTF8
format in order to facilitate portability. Bounding box
coordinates are the coordinates in pixels of the en-
closing rectangle that describe a word’s location and
dimensions on a page image.

In coming up with a model for the COF that
captures word strings and bounding box coordinates,
it would have been desirable that the UDBE adopts a
format that is a standard or as close as possible to a
standardized representation of OCR data. It was re-
vealed that, although there is currently no standard
belonging to a governing body, such as ISO or W3C,
for representing OCR data, there are two applicable
formats that are commonly used. One is DjVuXML
(DjVuXML manual page, http://djvulibre.djvuzone.
org/doc/man/djvuxml.html), which is an XML-based
format modelled after HTML that provides a simple
scheme for describing hidden text layers as well as
other information in DjVu documents (DjVu Tech-
nology Primer, 2004). The other is the Document
Attribute Format Specification (DAFS) (DAFS,
1994), which is a binary-coded format that provides a
specification for document decomposition and is
used in applications such as document layout analy-
sis, OCR, and logical analysis. Although DjVuXML
accommodates OCR text in a simple structure,
adopting a format designed for a specific purpose,
namely, describing DjVu documents, could be inad-
visable in a universal document encoding application,
because it could prove limited in accommodating

desired features. On the other hand, although DAFS
is a general purpose format for document decompo-
sition, adopting it could be inadvisable because of its
complexity and being binary-coded. Therefore, due
to the lack of an enforced standard and the concerns
mentioned regarding both DjVuXML and DAFS, a
COF was designed for the UDBE to be specifically
customized for the representation of image-on-text
documents.

The UDBE’s COF is an XML (Yergeau et al.,
2004) format inspired by both DjVuXML and DAFS.
Unlike DAFS, the COF is not binary-coded but is
based on XML, a widely used standard that represents
information in plain text in a self-explanatory fashion,
making it less complex to parse. The structure of the
COF is illustrated in Fig.13.

An image-on-text document in the COF consists

of pages, maps, a preference block, and metadata.
Page elements containing the two actual components
of the content, namely, the image and the text. The
text element is a hierarchical structure that consists of
the following levels: page column, region, paragraph,
line, word, and char (character). Each of these levels
has a coords attribute that defines its bounding box
and a CSS (Lie and Bos, 1999) style attribute that
describes its visual properties. Within a document,
map elements define HTML-like image maps, pref-
erence elements set viewer preferences, and metadata
elements embed bibliographic metadata using the
Dublin Core Metadata Element Set (DCMI, 2004) in
RDF (Resource Description Framework) form.

It should be noted that it is always possible to
build an OCR Converter for an OCR engine if the
native output is accessible. The native output, which
contains characters and bounding box data, is a
by-product of layout analysis, segmentation, and
recognition, which are functions intrinsic in the OCR

Document

Page

Map

Preference

Metadata

Image

Text

Area

Page column

Region

Paragraph

Line

Word

Character

Fig.13 Structure of the COF

Eldakar et al. / J Zhejiang Univ SCI 2005 6A(11):1327-1340 1337

process. Thus, in a current OCR suite, although the
final output is often just the symbolic content, the
detailed information on layout analysis, segmentation,
and recognition is always stored as an intermediate
step, and this information includes bounding box
coordinates of text blocks, lines, words, and
characters.

2. Format handling
Format Handlers are the part of the UDBE that

processes page images and OCR text in the COF to
produce files in target formats for publishing. Format
handling is broken down into three general functions:
Image Encoding, Text Insertion, and Page Bundling.
For each target format, a separate module handles
each of these functions.

Image Encoding operates on page images. It
does not operate on the COF. The Image Encoding
module accepts each individual page image and
encodes it into an individual file in the target format.
Because page images constitute the greater chunk of
data relative to OCR text, and because page images
are the viewable piece in image-on-text documents,
the primary concern of image encoding is reducing
file size and preserving quality.

Based on an image’s properties, the Image
Encoding module decides on the compression scheme
to apply according to the target format’s specification.
Document format specifications often support a
number of different image compression methods,
each designed for a specific type of image data. For
instance, JPEG compression performs well on
grayscale and RGB data but is inadequate for bilevel
data.

Certain compression algorithms cause a level of
loss of detail in order to achieve larger compression
ratios. In developing an image encoding module,
therefore, it is important to judge to what degree a
lossy encoding method is acceptable. In addition,
image encoding could perform resolution down-
sampling in order to further cut down the file size at
the expense of quality by representing the image in
fewer pixels. The effects of resolution downsampling
are less obvious in RGB images containing simple
textures than in bilevel images containing text.

Text Insertion operates on output from Image
Encoding and OCR Conversion. In Text Insertion,
encoded page images are associated with OCR text to
produce searchable images. The Text Insertion

module processes image-only documents in the target
format and text in the COF then encodes
image-on-text documents in the target format.

A valid target format specification could
explicitly support hidden text. Alternatively, the
format could support the necessary features that allow
for the implementation of hidden text functionality. In
essence, an image-on-text format is capable of
containing images and text, such that images are
displayed and text is not but is highlightable based on
settable parameters. For instance, a format that is
capable of displaying images, positioning text using
pixel coordinates, setting text width and height
independently, and transparency is a valid image-on-
text format. The Text Insertion module of such format
would place each word from the COF at its pixel
location in the target format, set the text object’s
width and height to match the word’s bounding box,
and apply transparent rendering to the text.

It may be necessary during Text Insertion to
perform coordinate system conversions in order to
adapt bounding box coordinates from the COF’s
pixel-based top-left-origined space to the target
format’s. In converting from units of pixels to units of
non-pixels, such as points, millimeters or inches, the
page image’s resolution must be taken into account.
In addition, it may be necessary to perform character
set conversions on the UTF8 word strings if the target
format requires a different encoding.

Page Bundling is the final step in format
handling. It operates on output from the Text
Insertion. The purpose of Page Bundling is to group
individual searchable page images produced during
Text Insertion into one bundle containing all pages,
making it convenient to browse. The functionality of
a Page Bundling module is simple. It consists of
constructing a blank document in the target format
and inserting each individual searchable page image
into it in the correct page sequence.

Implementation and performance

The current implementation of the UDBE
supports Arabic, Persian, and Latin languages
through the integration of a multilingual OCR engine,
and encodes into two target formats, namely, DjVu
and PDF.

An OCR Converter was implemented for the
native format of Automatic Reader, which is an OCR

Eldakar et al. / J Zhejiang Univ SCI 2005 6A(11):1327-1340 1338

product that features engines for the recognition of
Arabic, Persian, and 18 Latin-based languages, such
as English, French, and Spanish. Automatic Reader
also features a learning system, which allows for the
definition of custom recognition fonts to expand the
types of prints the engine handles and to improve
recognition accuracy. This OCR Converter, thus,
enables the UDBE to handle digitized books in a wide
range of languages. Automatic Reader makes its
native format available through an SDK.

DjVu and PDF are two formats that were found
suitable for use in publishing of digitized books
according to the requirements outlined earlier. Since
they are the only known formats to support
image-on-text in light-weight documents suitable for
Web publishing, support for these two formats was
integrated into the UDBE.

Developed during the last decade of the
twentieth century at AT&T Labs, DjVu is an image
compression technique and a file format specifically
designed for building high-visual-quality digital
libraries. The compression technique uses a mixed
raster content (MRC) imaging model, where advanced
image analysis is used to segment the image into
layers and compress each layer separately using the
algorithm that best suits its content (DjVu Technology
Primer, 2004). Traditional image compression models
are either designed to compress natural images with
few sharp edges or images containing text and mostly
consisting of sharp edges. DjVu works by combining
these two approaches on document images through
segmentation, which involves the separation of text
from background and pictures (Haffner et al., 1999).
In a DjVu document, text layers are typically stored at
300 dpi and compressed using the shape clustering
JB2 algorithm, which takes advantage of similarities
between characters, while pictures are typically stored
at 100 dpi and compressed using the wavelet-based
IW44 algorithm.

LizardTech acquired the DjVu technology from
AT&T Labs and commercialized it in the company’s
Document Express product but also made a free
implementation of the technology available through
the DjVu Libre open source project. While bilevel
encoding in DjVu Libre is competitive with
LizardTech’s, color image encoding remains superior
in the commercial product due to its ability to
segment color images into layers. The UDBE’s

implementation of the DjVu Format Handler is built
around DjVu Libre in order to provide a purely free
solution. Alternatively, however, a solution built
around LizardTech’s Document Express is also
implemented. These implementations are wrappers
around DjVu Libre and Document Express,
respectively.

Each of DjVu Libre and Document Express
includes a DjVuXML (DjVuXML manual page,
http://djvulibre.djvuzone.org/doc/man/djvuxml.html)
processor that updates DjVu documents according to
the information in the DjVuXML file. Text Insertion
in the DjVu format, therefore, involves the
transformation of the COF into DjVuXML and
applying the DjVuXML file to the encoded DjVu
images. Page Bundling of DjVu documents is a
straightforward task, because both DjVu Libre and
Document Express include a utility to merge DjVu
documents.

The Portable Document Format (PDF) (Phelps
and Wilensky, 2001) is a document format from
Adobe that has earned extremely wide popularity.
Having many aspects in common with the PostScript
printing language, the PDF format is robust enough to
represent a wide variety of document types including
image-on-text documents. For each input page image,
the Image Encoding module for the PDF format
constructs a PDF page equal in width and height to
the dimensions of that image, encodes the image data
using the compression method supported by the PDF
specification (PDF Reference, 2004) that yields the
smallest file size, then inserts the encoded data into
the document such that it covers the whole page. Page
images that feed into the encoding system are either
bilevel or RGB images. CCITT G4 compression is
designed specifically for bilevel image data and will
always yield better compression ratios for such data
than either JPEG or deflate. For RGB data, JPEG
compression is adequate for continuous tone images,
such as photographs and colorful drawings with
smooth edges, while deflate compression is adequate
for images consisting of large blocks of solid colors.
Commonly, however, color book pages are of the
former type and compress best with JPEG.

The Text Insertion module reads the OCR text
data in the COF, which is the unified OCR text
representation that the encoding system has adopted.
Unlike the DjVu format, the PDF format does not per

Eldakar et al. / J Zhejiang Univ SCI 2005 6A(11):1327-1340 1339

se specify image-on-text functionality. However, it is
possible to achieve image-on-text functionality in
PDF documents by utilizing the PDF text and font
operators to emulate bounding box behavior.

In the UDBE, where supporting Arabic text in
the target publishing formats was a primary objective,
it was necessary to “ligaturize” Arabic text strings in
order to display correctly in the search side pane in
Adobe Reader. In other words, the PDF Text Inserter
must transform each character string in its input into
its appropriate shape according to its position in a
word. In doing so, the Text Inserter makes use of a
module to perform Arabic character shaping. An open
source Arabic character shaping module was used in
this implementation (iText: A free Java PDF library,
http://www.lowagie.com/iText). Latin text does not
require ligation, because Latin characters always
assume one shape regardless of their position in a
word.

The PDF Format Handler’s Page Bundling
module concatenates the image-on-text PDF pages
coming from the Text Insertion into a single PDF
document. The module does this bundling by reading
each individual page into a PDF XObject—which is
an object that acts as a template, encapsulating other
objects, such as text and graphics, within it—then
inserting the template into the appropriate page
position in the multipage PDF document.

Support for the PDF target format was written in
the Java programming language based on the open
source iText API (iText: A free Java PDF library,
http://www.lowagie.com/iText). The PDF Format
Handler’s image access and conversion functionalities
in the Image Encoding module were based on the Java
Advanced Imaging (JAI) API (JAIAPI, 2004).

Evaluation of the performance of this imple-
mentation of the UDBE framework showed that for
either DjVu or PDF, the increase in file size after
adding hidden text layers to image-only documents
remains within reasonable bounds, justifying the
decision to publish scanned books in image-on-text
format in order to achieve the strongly desired
searchability and ability to otherwise process text in
applications such as machine translation. Fig.14a
compares average page file sizes of image-only and
image-on-text output for a set of bilevel Arabic books,
and Fig.14b does a similar comparison for Latin.
Performance has also been compared to alternative
systems capable of producing image-on-text for Latin
languages, namely, Acrobat, FineReader, and Liz-
ardTech’s Document Express, which possesses
built-in OCR functionality, and performance has been
found to be comparable. The UDBE has been used in
the encoding of nearly 7000 books of BA’s digitized
work, and the system will continue to be used on other
batches of books as their OCR becomes available.

DAR

The Digital Assets Repository (DAR) (Saleh et
al., 2005) is a system developed at the BA to create
and maintain the digital library collections. The
system introduces a data model capable of associating
the metadata of different types of resources with the
content, such that searching and retrieval can be done
efficiently. The system automates the digitization
process of library collections as well as the preserva-
tion and archiving of the digitized output and provides
public access to the collection through browsing and

Image-on-text
Image-only

UDBE PDF Acrobat UDBE DjVu
(Libre)

UDBE DjVu
(LT)

Av
er

ag
e

pa
ge

 fi
le

 si
ze

25

20

15

10

05

00

Fig.14 Bilevel Arabic (a) and Latin (b) image-only and image-on-text

0

5

10

15

20

25

30

35

40
45

UDBE PDF Acrobat FineReader UDBE DjVu
(Libre)

UDBE DjVu
(LT)

LizardTech

Av
er

ag
e

pa
ge

 fi
le

 si
ze

Image-on-text
Image-only

(a) (b)

Eldakar et al. / J Zhejiang Univ SCI 2005 6A(11):1327-1340 1340

searching capabilities. The goal of this project is
building a digital resources repository by supporting
the creation, use, and preservation of varieties of
digital resources as well as the development of man-
agement tools. These tools help the library to preserve,
manage, and share digital assets. The system is based
on evolving standards for easy integration with
Web-based interoperable digital libraries.

The system core consists of two fundamental
modules: the Digital Assets Factory (DAF), which is
responsible for the automation of the digitization
workflow; and the Digital Assets Keeper (DAK),
which acts as a repository for digital assets either
produced by the DAF or directly introduced into the
repository.

FUTURE WORK

Continuing to develop better scanning, image
processing, and OCR techniques is critical to the
production of good quality digital books. This also
requires continuing to watch for emerging technology
in scanning hardware and image processing and OCR
software. Better Arabic OCR software is particularly
desirable. In preparing books for publishing, further
work is necessary in order to integrate more OCR
engines into the UDBE and to research alternatives to
DjVu and PDF. In addition, it is important to continue
to investigate published standards that could be
beneficial for formulation of the COF. The UDBE’s
current implementation of the PDF Image Encoder
also requires further work in order to achieve better
compression through JBIG2 and JPEG2000 encoding,
and possibly through image segmentation and MRC.
In addition, extensions to existing viewers could be
desirable in order to add features specific to im-
age-on-text, such as the ability to display the hidden
text layer.

References
Allen, J., Becker, J., 2003. The Unicode Standard, Version 4.0.

Addison-Wesley, Reading, MA.
DAFS (Document Attribute Format Specification), 1994. RAF

Technology, Inc., Redmond, Washington.
DCMI (Dublin Core Metadata Element Set), 2004. The Dublin

Core Metadata Initiative.
Ding, X., Wen, D., Peng, L., Liu, C., 2004. Document Digiti-

zation Technology and its Application for Digital Library
in China. Proceedings of the First International Confer-
ence on Document Image Analysis for Libraries, p.46-53.

DjVu Technology Primer, 2004. LizardTech, Inc., Seattle,
WA.

Haffner, P., Bottou, L., Howard, P., Le Cun, Y., 1999. DjVu:
Analyzing and Compressing Scanned Documents for
Internet Distribution. Proceedings of International Con-
ference on Document Analysis and Recognition
(ICDAR’99), p.625-628.

Hong, T., Srihari, S., 1997. Representing OCRed Documents
in HTML. Proceedings of the Fourth International Con-
ference on Document Analysis and Recognition,
p.831-834.

JAIAPI (Java Advanced Imaging API), 2004. Sun Microsys-
tems, Santa Clara, CA.

Kenney, A., Rieger, O., 2000. Moving Theory into Practice:
Digital Imaging for Libraries and Archives. Research
Libraries Group.

Lesk, M., 1996. Substituting Images for Books: The Eco-
nomics for Libraries. Proceedings of Symposium on
Document Analysis and Information Retrieval, p.1-16.

Lie, H., Bos, B., 1999. Cascading Style Sheets, Level 1. The
World Wide Web Consortium.

PDF Reference, 2004. Fourth Edition. Adobe Systems, Inc.,
San Jose, CA.

Phelps, T., Wilensky, R., 2001. The Multivalent Browser: A
Platform for New Ideas. Proceedings of the ACM Sym-
posium on Document Engineering, Atlanta, US.

Saleh, I., Adly, N., Nagi, M., 2005. DAR: A Digital Assets
Repository for Library Collections. Proceedings of
ECDL’05, Vienna, Austria.

UDL (The Universal Digital Library), 2004. Carnegie Mellon
University, Pittsburg, PA.

Yergeau, F., Bray, T., Paoli, J., Sperberg-McQueen, C., Maler,
E., 2004. Extensible Markup Language (XML), 1.0,
Third Edition. The World Wide Web Consortium.

